7.12.11

Galileo Galilei

(Italian pronunciation: [ɡaliˈlɛːo ɡaliˈlɛi]; 15 February 1564[4] – 8 January 1642),[1][5] was an Italian physicist, mathematician, astronomer, and philosopher who played a major role in the Scientific Revolution. His achievements include improvements to the telescope and consequent astronomical observations and support for Copernicanism. Galileo has been called the "father of modern observational astronomy",[6] the "father of modern physics",[7] the "father of science",[7] and "the Father of Modern Science".His contributions to observational astronomy include the telescopic confirmation of the phases of Venus, the discovery of the four largest satellites of Jupiter (named the Galilean moons in his honour), and the observation and analysis of sunspots. Galileo also worked in applied science and technology, inventing an improved military compass and other instruments.

Galileo's championing of heliocentrism was controversial within his lifetime, when most subscribed to either geocentrism or the Tychonic system.[9] He met with opposition from astronomers, who doubted heliocentrism due to the absence of an observed stellar parallax.[9] The matter was investigated by the Roman Inquisition in 1615, and they concluded that it could only be supported as a possibility, not as an established fact.[9][10] Galileo later defended his views in Dialogue Concerning the Two Chief World Systems, which appeared to attack Pope Urban VIII and thus alienated him and the Jesuits, who had both supported Galileo up until this point.[9] He was tried by the Inquisition, found "vehemently suspect of heresy", forced to recant, and spent the rest of his life under house arrest.[11][12] It was while Galileo was under house arrest that he wrote one of his finest works, Two New Sciences. Here he summarized the work he had done some forty years earlier, on the two sciences now called kinematics and strength of materials.
 
 
Early life
Galileo was born in Pisa (then part of the Duchy of Florence), Italy, the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist, and Giulia Ammannati. Four of their six children survived infancy, and the youngest Michelangelo (or Michelagnolo) also became a noted lutenist and composer.

Galileo was named after an ancestor, Galileo Bonaiuti, a physician, university teacher and politician who lived in Florence from 1370 to 1450; at that time in the late 14th century, the family's surname shifted from Bonaiuti (or Buonaiuti) to Galilei. Galileo Bonaiuti was buried in the same church, the Basilica of Santa Croce in Florence, where about 200 years later his more famous descendant Galileo Galilei was buried too. When Galileo Galilei was 8, his family moved to Florence, but he was left with Jacopo Borghini for two years.[1] He then was educated in the Camaldolese Monastery at Vallombrosa, 35 km southeast of Florence.
 
Although a genuinely pious Roman Catholic,[15] Galileo fathered three children out of wedlock with Marina Gamba. They had two daughters, Virginia in 1600 and Livia in 1601, and one son, Vincenzo, in 1606. Because of their illegitimate birth, their father considered the girls unmarriageable. Their only worthy alternative was the religious life. Both girls were sent to the convent of San Matteo in Arcetri and remained there for the rest of their lives.[16] Virginia took the name Maria Celeste upon entering the convent. She died on 2 April 1634, and is buried with Galileo at the Basilica of Santa Croce, Florence. Livia took the name Sister Arcangela and was ill for most of her life. Vincenzo was later legitimized and married Sestilia Bocchineri.
 
 
Career as a scientist
Although he seriously considered the priesthood as a young man, at his father's urging he instead enrolled at the University of Pisa for a medical degree. He did not complete this degree, but instead studied mathematics.[18] Galileo was also studious of disegno, a term encompassing fine art, and in 1588 attained an instructor position in the Accademia delle Arti del Disegno in Florence, teaching perspective and chiaroscuro. Being inspired by the artistic tradition of the city and the works of the Renaissance artists, Galileo acquired an aesthetic mentality. While a young teacher at the Accademia, he began a lifelong friendship with the Florentine painter Cigoli, who included Galileo's lunar observations in one of his paintings.

In 1589, he was appointed to the chair of mathematics in Pisa. In 1591 his father died and he was entrusted with the care of his younger brother Michelagnolo. In 1592, he moved to the University of Padua, teaching geometry, mechanics, and astronomy until 1610.[21] During this period Galileo made significant discoveries in both pure fundamental science (for example, kinematics of motion and astronomy) as well as practical applied science (for example, strength of materials and improvement of the telescope). His multiple interests included the study of astrology, which at the time was a discipline tied to the studies of mathematics and astronomy.
 
Cardinal Bellarmine had written in 1615 that the Copernican system could not be defended without "a true physical demonstration that the sun does not circle the earth but the earth circles the sun".[23] Galileo considered his theory of the tides to provide the required physical proof of the motion of the earth. This theory was so important to Galileo that he originally intended to entitle his Dialogue on the Two Chief World Systems the Dialogue on the Ebb and Flow of the Sea.[24] The reference to tides was removed by order of the Inquisition.

For Galileo, the tides were caused by the sloshing back and forth of water in the seas as a point on the Earth's surface speeded up and slowed down because of the Earth's rotation on its axis and revolution around the Sun. Galileo circulated his first account of the tides in 1616, addressed to Cardinal Orsini.[25] His theory gave the first insight into the importance of the shapes of ocean basins in the size and timing of tides; he correctly accounted, for instance, for the negligible tides halfway along the Adriatic Sea compared to those at the ends. As a general account of the cause of tides, however, his theory was a failure.

If this theory were correct, there would be only one high tide per day. Galileo and his contemporaries were aware of this inadequacy because there are two daily high tides at Venice instead of one, about twelve hours apart. Galileo dismissed this anomaly as the result of several secondary causes, including the shape of the sea, its depth, and other factors.[26] Against the assertion that Galileo was deceptive in making these arguments, Albert Einstein expressed the opinion that Galileo developed his "fascinating arguments" and accepted them uncritically out of a desire for physical proof of the motion of the Earth.[27] Galileo dismissed as a "useless fiction" the idea, held by his contemporary Johannes Kepler, that the moon caused the tides.[28] Galileo also refused to accept Kepler's elliptical orbits of the planets,[29] considering the circle the "perfect" shape for planetary orbits.
 
 
Controversy over comets and The Assayer 
In 1619, Galileo became embroiled in a controversy with Father Orazio Grassi, professor of mathematics at the Jesuit Collegio Romano. It began as a dispute over the nature of comets, but by the time Galileo had published The Assayer (Il Saggiatore) in 1623, his last salvo in the dispute, it had become a much wider argument over the very nature of science itself. Because The Assayer contains such a wealth of Galileo's ideas on how science should be practised, it has been referred to as his scientific manifesto.[30] Early in 1619, Father Grassi had anonymously published a pamphlet, An Astronomical Disputation on the Three Comets of the Year 1618, [31] which discussed the nature of a comet that had appeared late in November of the previous year. Grassi concluded that the comet was a fiery body which had moved along a segment of a great circle at a constant distance from the earth,[32] and since it moved in the sky more slowly than the moon, it must be farther away than the moon.

Grassi's arguments and conclusions were criticized in a subsequent article, Discourse on the Comets,[33] published under the name of one of Galileo's disciples, a Florentine lawyer named Mario Guiducci, although it had been largely written by Galileo himself.[34] Galileo and Guiducci offered no definitive theory of their own on the nature of comets,[35] although they did present some tentative conjectures that are now known to be mistaken. In its opening passage, Galileo and Guiducci's Discourse gratuitously insulted the Jesuit Christopher Scheiner,[36] and various uncomplimentary remarks about the professors of the Collegio Romano were scattered throughout the work.[37] The Jesuits were offended,[38] and Grassi soon replied with a polemical tract of his own, The Astronomical and Philosophical Balance,[39] under the pseudonym Lothario Sarsio Sigensano,[40] purporting to be one of his own pupils.

The Assayer was Galileo's devastating reply to the Astronomical Balance.[41] It has been widely regarded as a masterpiece of polemical literature,[42] in which "Sarsi's" arguments are subjected to withering scorn.[43] It was greeted with wide acclaim, and particularly pleased the new pope, Urban VIII, to whom it had been dedicated.[44] Galileo's dispute with Grassi permanently alienated many of the Jesuits who had previously been sympathetic to his ideas,[45] and Galileo and his friends were convinced that these Jesuits were responsible for bringing about his later condemnation.[46] The evidence for this is at best equivocal, however.
 
 
Controversy over heliocentrism
Biblical references Psalm 93:1, 96:10, and 1 Chronicles 16:30 include text stating that "the world is firmly established, it cannot be moved." In the same manner, Psalm 104:5 says, "the Lord set the earth on its foundations; it can never be moved." Further, Ecclesiastes 1:5 states that "And the sun rises and sets and returns to its place" etc.

Galileo defended heliocentrism, and claimed it was not contrary to those Scripture passages. He took Augustine's position on Scripture: not to take every passage literally, particularly when the scripture in question is a book of poetry and songs, not a book of instructions or history. He believed that the writers of the Scripture merely wrote from the perspective of the terrestrial world, from that vantage point that the sun does rise and set. Another way to put this is that the writers would have been writing from a phenomenological point of view, or style. So Galileo claimed that science did not contradict Scripture, as Scripture was discussing a different kind of "movement" of the earth, and not rotations.

By 1616 the attacks on the ideas of Copernicus had reached a head, and Galileo went to Rome to try to persuade the Catholic Church authorities not to ban Copernicus' ideas. In the end, Cardinal Bellarmine, acting on directives from the Inquisition, delivered him an order not to "hold or defend" the idea that the Earth moves and the Sun stands still at the centre. The decree did not prevent Galileo from discussing heliocentrism hypothesis (thus maintaining a facade of separation between science and the church). For the next several years Galileo stayed well away from the controversy. He revived his project of writing a book on the subject, encouraged by the election of Cardinal Maffeo Barberini as Pope Urban VIII in 1623. Barberini was a friend and admirer of Galileo, and had opposed the condemnation of Galileo in 1616. The book, Dialogue Concerning the Two Chief World Systems, was published in 1632, with formal authorization from the Inquisition and papal permission.

Dava Sobel[50] explains that during this time, Urban had begun to fall more and more under the influence of court intrigue and problems of state. His friendship with Galileo began to take second place to his feelings of persecution and fear for his own life. At this low point in Urban's life, the problem of Galileo was presented to the pope by court insiders and enemies of Galileo. Coming on top of the recent claim by the then Spanish cardinal that Urban was soft on defending the church, he reacted out of anger and fear. This situation did not bode well for Galileo's defense of his book.

Earlier, Pope Urban VIII had personally asked Galileo to give arguments for and against heliocentrism in the book, and to be careful not to advocate heliocentrism. He made another request, that his own views on the matter be included in Galileo's book. Only the latter of those requests was fulfilled by Galileo. Whether unknowingly or deliberately, Simplicio, the defender of the Aristotelian Geocentric view in Dialogue Concerning the Two Chief World Systems, was often caught in his own errors and sometimes came across as a fool. Indeed, although Galileo states in the preface of his book that the character is named after a famous Aristotelian philosopher (Simplicius in Latin, Simplicio in Italian), the name "Simplicio" in Italian also has the connotation of "simpleton".[51] This portrayal of Simplicio made Dialogue Concerning the Two Chief World Systems appear as an advocacy book: an attack on Aristotelian geocentrism and defence of the Copernican theory. Unfortunately for his relationship with the Pope, Galileo put the words of Urban VIII into the mouth of Simplicio. Most historians agree Galileo did not act out of malice and felt blindsided by the reaction to his book.[52] However, the Pope did not take the suspected public ridicule lightly, nor the Copernican advocacy. Galileo had alienated one of his biggest and most powerful supporters, the Pope, and was called to Rome to defend his writings.

With the loss of many of his defenders in Rome because of Dialogue Concerning the Two Chief World Systems, Galileo was ordered to stand trial on suspicion of heresy in 1633. The sentence of the Inquisition was in three essential parts:

    * Galileo was found "vehemently suspect of heresy", namely of having held the opinions that the Sun lies motionless at the centre of the universe, that the Earth is not at its centre and moves, and that one may hold and defend an opinion as probable after it has been declared contrary to Holy Scripture. He was required to "abjure, curse and detest" those opinions.

    * He was sentenced to formal imprisonment at the pleasure of the Inquisition. On the following day this was commuted to house arrest, which he remained under for the rest of his life.
 
    * His offending Dialogue was banned; and in an action not announced at the trial, publication of any of his works was forbidden, including any he might write in the future.

According to popular legend, after recanting his theory that the Earth moved around the Sun, Galileo allegedly muttered the rebellious phrase And yet it moves, but there is no evidence that he actually said this or anything similar. The first account of the legend dates to a century after his death.

After a period with the friendly Ascanio Piccolomini (the Archbishop of Siena), Galileo was allowed to return to his villa at Arcetri near Florence in 1634, where he spent the remainder of his life under house arrest. Galileo was ordered to read the seven penitential psalms once a week for the next three years. However his daughter Maria Celeste relieved him of the burden after securing ecclesiastical permission to take it upon herself.[57] It was while Galileo was under house arrest that he dedicated his time to one of his finest works, Two New Sciences. Here he summarized work he had done some forty years earlier, on the two sciences now called kinematics and strength of materials. This book has received high praise from Albert Einstein.[58] As a result of this work, Galileo is often called the "father of modern physics". He went completely blind in 1638 and was suffering from a painful hernia and insomnia, so he was permitted to travel to Florence for medical advice.
 
Death
Galileo continued to receive visitors until 1642, when, after suffering fever and heart palpitations, he died on 8 January 1642, aged 77.[13] The Grand Duke of Tuscany, Ferdinando II, wished to bury him in the main body of the Basilica of Santa Croce, next to the tombs of his father and other ancestors, and to erect a marble mausoleum in his honour.[59] These plans were scrapped, however, after Pope Urban VIII and his nephew, Cardinal Francesco Barberini, protested,[60] because Galileo was condemned by the Catholic Church for "vehement suspicion of heresy".[61] He was instead buried in a small room next to the novices' chapel at the end of a corridor from the southern transept of the basilica to the sacristy.[62] He was reburied in the main body of the basilica in 1737 after a monument had been erected there in his honour;[63] during this move, three fingers and a tooth were removed from his remains.[64] One of these fingers, the middle finger from Galileo's right hand, is currently on exhibition at the Museo Galileo in Florence, Italy.[65]
 
Bibliographgy
 
 PBS Nova Online: Galileo's Battle for the Heavens
 Stanford Encyclopedia of Philosophy entry on Galileo
 Animated Hero Classics: Galileo (1997) at the Internet Movie Database
 O'Connor, John J.; Robertson, Edmund F., "Galileo Galilei", MacTutor History of Mathematics archive,   University of St Andrews, http://www-history.mcs.st-andrews.ac.uk/Biographies/Galileo.html

No comments:

Post a Comment